主页 > 案例大全 > 论文方法介绍-配电网接纳分布式电源能力分析

论文方法介绍-配电网接纳分布式电源能力分析

2021-05-04 16:02:39

  现如今最常用的电力供应方式还是火力发电方式,这种传统方式会使用大量的煤炭、石油等能源,但是使用这些能源会带来许多能源匮乏的危机,并在一定程度上使得环境遭受污染。又因为其负荷是动态变化的,大规模联接各个电网的供电模式使得每一个环节都影响着整体,局部的停电就会导致整个电网大面积的停电,具有较差的灵活性。同时传统的电网完全依赖于煤炭等不可再生资源来提供电力,也产生了对这类资源的过度使用和对地球环境造成了污染的情况,而配电网的能源供给多样化,实现太阳能、风能、生物能等其他可再生清洁能源同时供给,与传统能源构成互相备用关系。基于这样的电网发展趋势,需要对传统电网接纳其他形式电源进行研究,其中最主要的就是配电网的接纳能力,因为其它影响因素对其的影响会使得配电网的性能无法最大发挥。通过系列理论分析后,使用OpenDSS仿真软件搭建配电网系统,使用Matlab编写蒙特卡洛随机模拟算法模拟光伏系统接入配电网的过程,进而使用二者联调,分析有载调压变压器抽头调整与无功补偿两种控制措施对配电网接纳光伏电源最大准入容量的影响。在分析这两项调整措施的改善作用时利用软件仿真来进行各种形式可接入配电网的模拟。

  现如今最常用的电力供应方式还是火力发电方式,这类传统方式会使用大量的煤炭、石油等能源,但是使用这些能源会带来许多能源匮乏的危机,并一定程度地使得环境遭受污染。又因为负荷是动态变化的,大规模联接各个电网的供电模式使得每一个环节都影响着整体,局部的停电就会导致整个电网大面积的停电,具有较差的灵活性。同时传统的电网完全依赖于煤炭等不可再生资源来提供电力,也产生了对这类资源的过度使用和对地球环境造成了污染,而配电网的能源供给多样化,实现太阳能、风能、生物能等其他可再生清洁能源同时供给,与传统能源构成互相备用关系。

  配电网是为了满足居民的用电需求,因此需要弄清楚在接纳其它形式的分布式电源后配电网的供电能力可能受到其中环节的影响。

  该问题引发了许多国家的重视,进行了大量研究来弄清楚对电网的影响具体体现在哪些方面,首先最直观的是系统的稳定性受到了影响,同时还会影响电能质量、潮流分布、稳态电压的分布以及供电的可靠性。而且在配电系统的接入点处还会产生电压越限、整个电网线路所受的载荷过大等问题。但是,如果能弄清这些因素的影响,并作出相应的改善,让这些分布式电源的接入更加合理,就能使的配电网更好地向用户提供电力,一般使用可接纳的容量来衡量配电网对不同形式的电源的接纳能力。

  为了让配电系统中清洁能源的利用率达到最高,我们在规划设计时就必须采用合理的控制措施,使分布式电源的准入容量达到最大值。因此,需要建立起合理的指标来衡量配电网的接纳能力以及接纳后的供电水平,对主要指标进行评估。

  1.2研究现状

  目前已有很多学者对该问题展开了研究和调查,为了评价配电网的接纳能力以及找到相关的影响因素,评价能力的高低以及判断影响因素的影响作用情况都需要一个指标——配电网的最大接入容量,这个容量指的是其他发电形式的分布式电源的容量。当然有些研究从不同的角度进行判断和评估,认为其容量值与配电变压器的额定容量之间的关系能很好的反应接纳能力;另外一些文献还采用一些新的指标来衡量,就是在渗透率的基础上进行更加细致的分类,分别计算能源和容量的渗透率来进行评估电网的总负荷中的总发电量比率和接纳的电源占有比。

  已有的研究主要围绕如何提高配电网的消纳能力而展开,而笔者将考虑在各种规定的约束条件下,对每一种约束因素的影响作用进行分析,弄清楚各种因素以及多种因素同时作用的影响程度。本文主要针对衡量这些问题的标准就是接纳能力的计算方法和接纳能力的影响约束因素进行介绍。

  1.2.1配电网分布式电源最大准入容量的计算方法

  经过相关的文献调研,总结出试探法、数学优化算法和模拟算法这三种容量计算方法。

  (1)试探法

  试探法就是事先给定分布式电源的接入位置和接入容量,采用仿真软件来设置负荷的大小,就能够很好的模拟电网工作时的实际情况,建立起不同的模型来仿真分析,从而弄清楚配电网在接纳过程中需要遵循各种安全约束条件,以及在这些约束下配电网的极限功率。由于使用试探法时,配电网的相关物理概念清晰明确,仿真软件不仅易于操作,而且还能充分考虑实际配电系统在工作时所设定的一些安全约束条件,这些优点助推了该方法的广泛应用。但是试探法的缺点也很明显,就是它需要大量的重复性仿真试验,会浪费部分资源。

  (2)数学优化算法

  数学优化算法是编写算法来求解出最大准入功率,其大致思路为在必须要满足的安全约束条件下,求解目标函数,在实际中这些条件转换为一些参数设置,所求出的解就是分布式电源最大准入容量。

  阅读大量文献后发现,该方法的安全约束条件参数设置主要是根据节点电压来设计的。文献[1,2]在求解最大接入容量时对已有的模型进行优化设计;文献[3]在研究影响因素时,主要是围绕有载变压器展开的,探究其分接头的调压对接纳能力的影响程度,采取了改进的重复潮流算法来求解;文献[4]为了研究分散型电源最大准入功率的最优化算法,考虑到电网中的分散型电源在实际运行中的负载和输出特性是变化的,从而影响着电网系统的安全性,最终采用粒子群最优化算法计算了分散型电源在电路调和电压约束下的渗透率;文献[5]对各种形式的分布式电源进行研究,因为配电网的最大可接纳功率受接入电源的输出稳定性有关,而一般输出电源具有随机性和波动性,势必对接纳能力造成影响;文献[6]为了更加轻松求解最大可接纳功率,建立起更加有效的模型,使得负载不确定性被考虑在内,还联系了节点电压的约束;文献[7]提出的改进求解方法为模式搜索法,该方法很好地将多种约束条件都考虑在内,但在实际使用时却发现计算量很大,研究人员为了解决该问题提出了电压灵敏度模型和网损灵敏度模型,文献[8,9]在计算最大可接入电源功率时采用了新的分析方法,根据电压灵敏度与可接入功率的关系。同时证明了接入能力与接入位置的情况有关系,而这种影响是可以改善和降低的,通过对其进行调控是能提高之前的接入能力。但是该方法就使得建模过程变得复杂,因为需要考虑的因素太多,在实际使用过程中受到限制,应用性不强,存在的优点就是配电网的参数能够精确表达出来,有利于对这些参数调整来改变接纳能力。

  (3)模拟算法

  与上述两种方法不同的是,它是设计出一种模拟算法,根据算法来计算最大准入容量。文献[10,11]是采用蒙特卡洛模拟算法,该方法在完成最大容量确定的同时还能确保不出现过电压的现象,模拟的对象是采用光伏发电的可分布式电源,根据潮流计算来确定最大值。需要大量的潮流计算,这虽然是模拟算法的一大缺点,但也正因为其基本求解方法为潮流计算,却更容易被我们所理解,与在校学习内容结合较为紧密。这种方法的好处在于调整算法就能得到不同接入点的最大准入容量,还可以模拟不同容量电源在接纳到配电网的情况。

  1.2.2限制配电网接纳分布式电源能力的影响因素分析

  下面给出对配电网接纳能力的主要影响因素,可以大致划分为四大类:

  (1)配电网所能提供的接入位置有多个,而这些不同的位置在接入时使得受到电流的约束情况是不一样的。所以可以总结出接入位置会使得配电网的供电能力和质量发生变,电网在供电配电时的电网系统稳定性和可靠性发生改变,同时还有保护设置的存在添加安全约束;

  (2)实际运行中的负载和电源的输出特性是变化的;

  (3)不同形式的分布式电源对电网结构参数的调整;

  (4)对于已接纳其它形式电源的电网的系统运行管理也会发生改变。

  这些不同的影响因素的作用都是因安全约束限制对系统造成的影响,文献[12]指出光伏发电产生的接入电源可能使得接入点位置出现过电压的现象;文献[13]就过电压问题,考虑其限制作用下最大准入容量的上限,为了能有效提高最大允许容量的功率,还研究分析了对电源渗透率的操作与提高作用之间的关系;文献[14]最主要的对配电网接纳分布式电源的经济性方面进行分析,从这个角度来考虑接入时的布线情况对最大准入容量的影响,得出限制配电网接纳容量上限的因子有三相不平衡因子和低功因子;文献[15]在计算最大值时是根据电网的保护设置,当电网的接入容量过大时就会造成电网的短路,通过检测短路电流来限制最大准入容量的值,并列举出影响分布式电源最大接入能力的因素,保护设备和线路的耐受电流,可想而知,若不改造网络的保护配置,就会限制接入电源的功率和容量;每一种发电电源的发电原理并不相同,产生的输出电源的特性差异对其的影响也是有区别的,文献[19]主要是研究电网的稳定性在发生变化时,接入光伏电源的电网瞬态性能的变化情况,将稳态节点电压差和电压稳定值视为光伏设备最大接入能力的主要影响因素;文献[20]得出当接入电源是光伏电源时,针对输出电压的变化会采取一系列的调控措施,会引起功率因素和负荷水平的改变;文献[21]得出了在接入其它形式的电源后会让系统的结构参数发生变化,从这些变化来建立最大准入容量的变化规律,从而找出最大值;文献[22,23]采用不同形式的分布式电源的发电原理时存在区别的,使得输出的电源的各项性能指标也存在差异,使得自身的性能缺陷造成对接入能力的影响;文献[24]考虑到光伏设备接入点的负载,并根据负载容量沿馈线的分布情况进行了分析;文献[25]这些分布式电源产生的电能在向配电网的传输过程中因连接线材的参数使得电源质量受到影响,也对对接入能力造成影响,因为线材的粗细的传输性能时不相同的;在电网接入分布式电源的位置处电压会高于之前的电压值,但文献[26]却认为电压的变化在一定程度上有利于提高接纳能力,需要电压调节得当。除了对接入能力的影响因素研究之外,有学者从这些影响因素出发,探究围绕这些影响因素能否进行改善措施,文献[28]提出从提高控制能力来使机组的渗透率得到提高;文献[29]就当下研究出的主流因素的影响分析,并针对各种影响而给出了相应的调控措施对这种影响作用进行弱化。

  结合以上文献从各个方面的研究,受到的影响因素众多,同时还存在多因素共同影响的现象,负荷水平、调压措施、配电网结构参数、配电网的安全运行约束等都需要我们去认真研究,事实上,上述文献的很多研究成果对我有很大的启发,为本文的研究设计拓宽了思路。

  1.3本文的主要工作

  对于这方面的长期研究,到目前为止的研究成果有设置“消纳能力”或“接纳能力”来评估配电网的最大准入容量,虽然这两个名词只有一字之差,但是在本质上还是有些许区别的。“接纳能力”往往是在对配电网的规划过程中产生的,我们为了系统的安全稳定运行而更早的将影响因素考虑进去,在配电网的每一项设计环节中,包括各种形式的电源接纳问题以及接纳能力的评估和系统规划;而“消纳能力”指的是配电网在建成以后的后期运行过程中再次接入电源的能力,两者的分布式电源的接纳时间点不一样。

  首先进行的就是在配电网设计规划之初的接入能力分析。

  本文研究的验证思路是通过软件来进行仿真模拟的,将现实中的各种配电网的工作情况建立起对应的模型,在软件中进行运行计算最大准入容量,从而分析出最主要的影响因素。所用到的软件有和matlab,分别用于电网模型建立、潮流计算和仿真分析。下面介绍了每一章节的工作内容:

  第一章,结合相关阅读文献,从“配电网接纳分布式电源能力”这一课题的选择背景与意义以及研究现状这两个方面进行了讨论。

  第二章,分类讨论了各种分布式电源模型以及它们对潮流分布的影响,为后续的OpenDSS仿真建模奠定基础。

  第三章,系统介绍了蒙特卡洛随机模拟算法,并梳理了采用蒙特卡洛随机模拟法构建光伏发电模型的大致流程,作为接入能力的主要评判方法。

  第四章,简单介绍了OpenDSS软件的相关模型。

  第五章,在分析能力时,为仿真添加两个主要影响因素,并分别对这两个方面来进行仿真从。

  第六章,对前面章节的内容进行梳理,分析设计的研究方法,发现缺点并对此做出相应的改善规划。

  2分布式电源模型及其对潮流分布的影响

  在第一章中,我们主要介绍了目前最重要的三类可接纳最大容量的计算方法、影响配电网接纳能力的影响因素以及相关学者的研究成果。其实,随着现代电力系统的不断发展,能源的需求不断增加,许多能源单位都已经开始进行分布式能源发电系统的建设,一方面是已有的技术比较成熟适合在配电网中接纳其他形式的电源,另一方面是这种模式的电源模型具有很高的经济性。

  本文中,为了更好的建立OpenDSS配电网模型进行仿真分析,下面首先简单介绍分布式电源的定义,然后对各种分布式电源的数学模型进行简要分析。

  2.1分布式电源的定义

  在配电网中接入分布式电源的原因在于,分布式电源的发电形式多种多样,避免了传统电网对单一能源的依赖,并且提高了配电网的灵活性和供电能力。它依托自然资源和环境,根据负荷需求确定容量,根据可靠性和经济性原则确定运行方式,以优化能源效率为目标。图2.1介绍了最具有实际使用价值的清洁发电形式。

  图2.1常见分布式电源类型及其特点

  2.2常见分布式电源的数学模型

  在建立数学模型时需要根据接入电源的发电机制和原理来处理,而接入电源的形式使得潮流计算也不尽相同,原因是其分布情况不相同。

  2.2.1风力发电数字模型

  在日常生活中可以见到很多地方使用风力设备进行发电,这些风力发电设备产生的电力往往通过两种最主要的形式来使用。第一种是将风力发电系统连接到逆变器上通过转换输出到配电网,第二种是将二者直接连接起来。在对风力发电系统的国外研究上建立起多种分布理论,在国内一般使用结构更为简单的理论,该理论属于双参数分布,能够很好的将实际风速考虑在内。风力发电数学模型为:

  (2-1)

  其中为额定功率;为常数;和指的是实际情况对应的风速。

  2.2.2光伏发电数字模型

  地球上生物的生长都离不开太阳,而光伏发电实现对光能的使用升级到对光能的存储和转换,产生电能,光能是一种不会对环境造成污染的能源,其发电机制为太阳能发电板中的半导体在接收光照的条件下发生光电效应,经过能量转化以电能形式输出。光伏发电的使用广泛,而且是一种绿色无污染的清洁发电形式,能根据实际使用需求进行调节规模,体现出较高的可靠性。表2.1根据各项指标对我国的地理位置划分四类区域。

  表2.1中国不同地区的太阳光照条件

  光伏发电中的重要部分就是实现光能向电能的转换,这一过程需要光伏电池的工作来完成,并且接收的光照强度越大光伏电池的输出电流也越大,两者呈正比关系,而输出电流的大小同时还受到接入点处的电压的影响,同时电路中的反向饱和电流也会影响输出电流的大小,下面用公式来表达这些因素之间的关系:

  (2-2)

  式2-2中,为电子的电荷量;表示的是理想状态下二极管的参数值;表示采用并联连接的电路阻值,表示采用串联连接的电路阻值;为波尔兹曼常数;T为温度。

  图2.2对于电路原理进行了介绍,并存在以下的并网形式:

  (1)独立光伏发电

  该种情况一般受地理位置的限制,在当地没有其它配电网可接入,只能单独使用,一般由光伏发电的硅面板进行光能转换。

  (2)光伏并网发电

  通常连接电网的光伏发电设备,通过电力电子器件将DC转换为AC,并将其并入电网运行。在世界能源消耗的趋势和环境保护的要求下,光伏发电成为日后能源供应的主潮流。

  (3)混合性光伏发电

  该类型的发电设备所处的位置往往存在着不止一种可再生能源,一般都是几种或者多种。多种形式的能源转化成电能再储备在备用光伏电池中。

  图2.2光伏发电系统电路原理图

  下面给出公式建立起光照强度的表达式,也表示出其与分布类型之间的关系:

  (2-3)

  上式给出了光伏出力与光照强度以及其它参数之间的关系。

  首先对个体展开研究,分析出该形式发电的电源输出特性,建立起对应的模型。在研究分析过程中,为了简化计算和成本,对象选择单个光伏电池即可,光伏系统的输出电源主要受光照强度影响。区域中,每个光伏电池的转换率,电网连接逆变器的输出效率,表示环境温度,光伏发电的输出模式是:

  (2-4)

  相比于光照强度,温度的影响相对较小,太阳能发电装置外部温度的影响可忽略不计,输出模型可以作如下简化:

  (2-5)

  (2-6)

  这两个式子反映出光照强度对光伏发电的影响作用,并将光伏出力的表示通过建立概率密度函数来进行表示产生的光伏电源的电流大小:

  (2-7)

  (2-8)

  对上面分析研究进行总结,得到以下光伏出力的具体表达式:

  (2-9)

  通过化简可以表示为:

  (2-10)

  计算最大光伏出力。

  2.2.3燃料电池

  这类电池工作时的发电原理是电池内部燃料的化学能在电池的质子交换膜处发生能量形式的转换,使得发生化学反应产生电能。燃料电池的有功模型:

  (2-11)

  上面公式主要是表述了额定有功功率与线电阻等因素的影响关系,表示系统母线的电压;为输出电压;和表示的是化学反应过程中的控制参数。

  燃料电池的无功模型:

  (2-12)

  式(2-12)中,代表燃料电池的额定无功功率,其他参数与上述有功功率模型一致。

  2.2.4微型汽轮机

  微型汽轮机可以在多处发现,使用的也较多,通过汽轮机的做工带动发电机转动,从而产生电能。下面给出对应的仿真模型:

  (2-13)

  2.3分布式电源并网形式

  配电网对各种形式的分布式电源的接纳形式有三种,每种形式根据自己的并网特点,对配电网产生不同的影响,使配电网的性能发生不同改变。所以需要对最常使用的类型进行分析,其中使用最多的就是直接接入配电网的形式,还有就是在两者之间添加电力电子器件将其连接。

  第一种并网形式所涉及到的影响因素较少,所以对第二种并网形式进行主要研究。图2.3简化表示了并网接入的结构图。

  图2.3分布式电源通过逆变器并网简化图

  式(2-14)、(2-15)表示出了两项最主要的指标即输出的功率,其中包括对供电有用的有功部分和对供电无用的无功部分,并得到两者的表达关系式:

  (2-14)

  (2-15)

  2.4不同数字模型分布式电源对配电网潮流分布的影响

  2.4.1风力电源对潮流的影响

  由于风能分布的不稳定性,在风机并入配电网之后,会加剧三相电压的不平衡。

  2.4.2光伏电源对潮流的影响

  光伏发电就电网的稳定性来说,不会像风力发电来说输出的电源不会发生很大波动和不稳定性。配电网结合光伏电源,使得整个配电网的输送的电流功率值较之前有所提高。配电网的承受能力是有限的,如果电路中的功率流过大,则可能导致配电网短路。所以配电网接入的光伏电源,就可以根据发电装置来计算输出电源对配电网功率的贡献,然后与配电网中所能承受的最大功率流进行比较,确定所接光伏是否适合该配电系统。

  2.4.3燃料电池对潮流的影响

  燃料电池主要依靠化学能产生电能,然后通过一系列的变换进行使用。它和光伏发电的目的相同,也是其它形式的能源向电能转换,但是将燃料的化学能向电能的转换效果并不如光伏发电好。产生这种现象的主要原因是燃料电池的储备能量远远小于光伏发电装置,并且燃料电池输出的是直流功率,在接入配电网时很容易使潮流断开,引起短路问题。

  2.4.4微型汽轮机对潮流的影响

  微型汽轮机的操作过程较为复杂,生产和传输电能的效率相当缓慢,当配电网需要补充较多的功率时,微型汽轮机的接入可能会降低所有电源的工作效率进而影响整个配电网当中潮流的流动速率。

  综上所述,本文将重点研究配电网对光伏发电系统的接纳能力。

  3基于蒙特卡洛法的配电网光伏接纳能力分析

  在研究重组后的配电网功率时,还需要考虑接入规模,当规模达到一定限制时,接入点处会发生电压抬升,而整个电网中出现的电压越限会导致网内的功率出现倒送,说明此时的电网接纳能力已经达到了上限,无法完全吸收更多的输出功率。在研究该问题时首先需要弄清楚与这一现象影响因素,比如发电系统的输出电源与配电网的接入职位置和其自身的发电容量大小,都与是否发生功率倒送紧密相关。因此为了探究功率倒送现象,基于蒙特卡洛原理的随机场景模拟法能够模拟出现实中不同的并网形式,不同的接入点,通过对不同情境下的接入能力评估来分析影响因素的具体影响关系根据给定的光伏渗透率确定光伏发电系统的接入容量并为各负荷节点及光伏并网节点随机分配负荷曲线及光伏出力曲线,再通过潮流计算得到配电网系统中各节点的电压变化情况,为了更精确的模拟配电网接入大规模光伏发电系统馈线的运行状况,并以时间为基准建立起不同时刻发电系统处于不同负荷下的模型。

  3.1配电网运行约束

  在使用该方法之前,首先要对系统中存在的基本运行约束进行完备的考虑,这样才能更好的达到我们所需要的模拟效果。而这些不同形式的约束是为了保证运行的安全性并对三相潮流约束、母线稳态电压约束这两种约束进行表述。

  (3-1)

  公式中的和示表示电网系统中的母线的注入功率情况;和代表着不同位置的电压数值大小;表示相角差;表示电导值,而表示电纳值。

  (3-2)

  上式所表明的实际含义为母线上的电压需要严格控制在最小值和最大值这个范围之间。

  图3.1配电网接纳分布式电源能力的多概念模型

  上图3.1为了找出配电网接入能力的最关键影响因素引用了木桶效应原理,图3.1中的每一块木板代表一种可能的影响因素,不同种影响因素的影响水平用不同长的木板来表示,木板越短,就意味着这种影响因素对配电网接纳能力的限制程度越大。木桶的最大储水深度即储水量表示着配电网的最大准入容量。基于木桶原理,我们通常将最短的那一块木板视为衡量最终储水量大小的关键指标,这块木板代表着的是最大影响限制因素,只要找出木桶中最短的那块木板就能分析出是哪种具体的影响因素。所以需要对结果进行分析,我们可以从这个多概念模型中可以看出电压越限就是限制配电网对太阳能光伏发电系统接纳能力的那块短板,是所有概念中的薄弱环节,影响着系统的上限,所以想要提高系统的接纳能力首要进行的就是补起这块短板。

  3.2蒙特卡洛随机模拟法

  3.2.1年度典型时间点选取

  目前国内外学者在研究相关问题时,普遍会选择在确定光伏出力下的峰值负荷场景或最小负荷场景作为年度典型时间点。但是在日常生活中,光伏出力和配电网负荷实际上是随时间的变化一直在变化的,具有很大的波动性和不确定性,因此,为了使自己的理论研究更加贴合实际,需要进一步考虑太阳辐照强度的情况,我认为配电网区域范围相对较小,所以配电网涉及到的光伏发电系统受光照强度的影响不大,所以在借助Matlab建模的过程中,我对IEEE 33负荷节点系统的每个节点都设置了相同的太阳辐照强度,此外,为了更加准确的得到光伏渗透率,就不能不考虑辐射照度周期的影响,以小时为最小单位进行全年的时间划分,计算出每一时刻单位的光伏出力以及相应的负荷变动,这样就可以更加准确的建立起时间序列模型,并计算模型中每点的光伏渗透率,年度典型时刻点对应着光伏渗透率最大的时刻,展示出发电系统的光伏出力能力与所承担的负荷之间的关系,即式(3-3);

  (3-3)

  3.2.2随机场景分析过程

  (1)配电网可以提供的接入负荷点数目达到三十三个,而这些负荷点的情况都不尽相同,所以在分析过程中要保证随机性就需要随机选取接入点和负荷。

  (2)根据使用场景的模拟,得到每一种使用情况的配电网最大准入容量大小;对于每个可能接入光伏发电系统的负荷节点来说,光伏安装容量实际上就是该节点对应时刻的有功负荷与光伏渗透率的乘积。

  (3)因为配电上的负荷情况影响着配电网的供电能力,因此需要重视负荷的分布和接入点的合理分配;首先假定我们所要研究的配电网区域全年的太阳辐照强度以及环境温度的变化情况相同,在确定发电系统的光伏出力时还需要考虑配电网的可接入能力。

  (4)潮流计算;提前在OpenDSS中搭建好了线路、负荷、变压器的基本模型并编写完成了潮流计算的具体程序,还在Matlab中设置了前文所述的光伏渗透率、光伏最大接入数、负荷光伏数据以及变压器变比等研究所需的参数,然后借助OpenDSS在配电网研究方面的开源性,通过COM接口,在Matlab中调用OpenDSS对配电网系统稳态潮流的输出结果,其中主要的输出结果有光伏发电系统的最大工作能力提供的最大光伏出力以及接入点处的负荷情况,最后在Matlab中分别以光伏发电系统安装的总容量及各负荷节点电压的最大值为横纵坐标建立蒙特卡洛随机模拟的散点图。

  我想要以这种散点图的形式来记录分析配电网系统的电压水平。图中每一个点分别代表一次随机模拟的结果,多次改变Matlab中设置的参数数值并重复上述蒙特卡洛随机模拟潮流计算的步骤,将会得到各种不同的配电网情况下能反映系统电压水平的散点图,通过对这些散点图做进一步分析,找出配电网的接入规律。

  3.3影响评估

  用来评估配电网以及在接入光伏电源后的供电质量需要根据电压的浮动标准来确定,这方面国家电网给出上下浮动百分之七的范围,倘若将额定电压视做基准值,那么在配电网系统电压变化的散点图中各负荷节点电压的最大值正常情况下应在[0.93pu,1.07pu]区间内。接下来就是从已安装光伏发电系统的电网接收的容量大小中找出变化规律,需要对散点图中负荷节点进行划分,找出超出上限的区域和蓝色区域重合的部分,从而得到了由可接入容量固有值和最大值连接的直线。为了在配电网中更加合理地配置光伏发电系统,本文将在散点图中再分别过点K1、K2做两条平行于纵轴的辅助线,使整个坐标平面从左到右依次分为A、B、C三个区域。

  图3.2随机场景模拟法评估示意图

  在A区域内就表示接入容量在很低的位置,此时将其他的影响因素全部考虑进去是不会造成电压输出不稳定,且配电网系统的电压水平都保持在三相供电电压的允许偏移范围内,此时光伏发电系统的接入对配电网电压水平的影响很小。B区域内的点集表示当配电网中光伏发电系统安装的总容量在K1、K2之间时,超过K1和K2的部分则是因为配电网的负荷接入点设计得不合理或者是配电网对已有的负荷的分配不恰当,将会导致配电网系统的电压水平偏高,甚至超出正常的变化范围,如果这种情况真的出现,就需要分析出现该情况的原因是由那种影响因素造成的,并根据对应的影响因素制定出相应的配置方案。在区域C中,表示此时接入的光伏发电系统的容量大小已经超过最大限制值K2,此时不管进行何种形式的配置来降低影响因素的影响程度来提高接纳能力,都超过了最大允许接入容量的极限。

  所以在配电网在接纳光伏电源时,K1、K2点就已经决定了接入能力的上下限,对要对这两点进行分析研究。

  4基于OpenDSS的分布式电源的配电网潮流计算

  使用该软件建力配电网模型后,最先需要进行得就是潮流计算,计算结果对后面得很多环节都有贡献。其中,牛顿法和微分算法被认为是当前计算的标准,它被广泛应用在环形传输网络的计算中。这一章主要是使用软件得建模平台建立可仿真分析得模型,根据得到得准确模型完成其潮流计算。

  4.1仿真平台OpenDSS简介

  4.1.1 OpenDSS仿真平台架构

  软件最出色的就是其建模仿真应用,用于各种电力科学的研究和分析。该软件可以作为一个独立的执行程序来完成相关计算,也可以作为一个接口,用户可以同时使用不同软件分别编写程序,这便是其高度可扩展性的体现。图4.1主要是介绍该软件平台数据接口形式,以及和其它平台的连接形式。

  图4.1 OpenDSS仿真平台的数据接口示意图

  分析可知,在配电系统中OpenDSS仿真软件可以灵活地与其他软件相结合,本文便是借助Matlab编写蒙特卡洛随机模拟程序,再计算模型的潮流计算,通过仿真分析对其能力进行准确评估。

  4.1.2 OpenDSS仿真平台功能介绍

  该软件最强大的仿真功能,能对配电系统进行准确的建模,在分析配电系统时能够完成多项指标的分析任务。

  (1)潮流计算分析

  在进行潮流计算之前,首先需要定义网络组件,我们进入该组件的数据后,软件将执行网络结构的拓扑描述。软件在准备工作完成后,算法根据流动性进行潮流计算。因此,我们将能计算出每个节点,支路电流的电压,并获得配电馈线的功率流。在实际计算中,也有分销网络的网络参数不对称,而且软件也能解决得很好。但是多数情况下,收敛性都会受到各种实际因素的影响而发散。配电网支持多种电路形式,不同电路的潮流计算都可以进行。潮流的计算往往要受到负载波动的影响,该软件为了解决该问题提供了不同的计算模式来应对不同的潮流计算,比如日常潮流计算和年度潮流计算,当两者都需要的时候按照日常潮流计算来处理。从而将一整年的负荷根据前面的计算结果进行预测。

  (2)动态分析

  配电网接入的分布式电源的种类有很多,这些可再生能源在进行机电暂态仿真主要为风电和光伏发电这两种,并完成相应动态分析任务,配电网再接入分布式电源后进行动态分析需要数据接口传输数据并建立相关模型。

  4.1.3 OpenDSS仿真平台元件建模

  下图展示出了OpenDSS仿真软件的元件的主要分类分类,图4.2介绍该软件不同模块负责的内容。

  图4.2 OpenDSS仿真软件的元件分类

  (1)PC元件建模

  当存在电能向其他形式的能源进行转换时就需要PC组件来实现,当该组件接入后,整个配电网可以使用诺顿等效模型来建模,这是一种特殊的补偿形式。我们建立模型各个阶段的不对称性,需要考虑到不同的连接组件。在该元件中最关键的部分就是负载功率,下面给出不同负荷类型的解释 孙息。

  不同类型的模型中负荷的类型也会有所不同,在选择模型时需要考虑充分,下表详细的介绍了主要负载类型以及对应的具体描述。

  负荷类型详细解释

  恒PQ负荷的功率恒定,该模型达不到电压限制的条件时简化为线性来处理

  恒Z阻抗恒定,模型的功率类型分为两种,和电压相关联

  Motor系统功率恒定用P表示,系统阻抗恒定用Q表示

  恒I

  ZIPV混合模型

  CVR两个因素决定着功率和电压之间的变化关系

  恒P-固定Q系统的功率保持恒定,系统的阻抗保持为给定的值大小

  恒P-固定Q(Z)

  表4.1负荷类型及描述

  影响建模的决定性因素主要与关键部分的负载元件有关,只有确定负载类型才来完成配电网的建模过程,即在需要一个新的元件时进行创建一个负载,同时还需要对其进行命名,然后使用数字总线1来标记加载访问位置处的电压值;每一种负荷模型在软件中使用和表示时都有着特定对应的密码。这里需要注意的是状态是负载模拟状态,其中存在一个默认的变量。但是默认变量根据负载功率重新设置。一般来说,它是10的整数次幂,然后我们通过最大基数除以负载以获得两者之间的负载系数,并且通过此时引入每日口令,与负载模型的连接就可以完成。

  (2)PD元件建模

  PD元件架构构建的网格系统,并且它的主要作用是在电能的传输。更具代表性的是线和变压器,其可以通过一个条目形式来表示。软件对于该元件的建模过程主要是弄清楚元件的连接形式,再进行计算得到相应的矩阵。一般有三种计算方法,但是在实际使用中直接法最为简单和应用广泛。三个矩阵如式4-1所示。

  (4-1)

  4.1.4 OpenDSS仿真平台的输入输出配置文件

  完成配电网的建模流程后进行的各项分析都会产生各种结果和大量数据,所以该软件可以根据实际需要配备输入输出功能。配置文件的输入主要是为了将各种配电网和发电电源的参数传输到软件中更加准确地建模。后者具有两种格式,一个是TXT,而另一个是CSV。而配置文件从软件中输出出去时可以包含各种关键的数据。

  (1)输入配置文件

  由于后续会讨论有载调压器改变中间抽头的方法,因此下面主要展示变压器参数,电路中的其他元件及其参数可参考OpenDSS用户手册,这里不再赘

  表4.2变压器参数及描述

  (2)输出配置文件

  分析过程中的数据根据使用需求按照格式导出到其它地方情节,有三个主要的命令,包括表演。模型得建立以及仿真过程中得分析和结果作为文件保存和传输过程中需要导出命令,从而使得关键的文件得以存储,防止丢失和方便使用。不同于前者,它可以保存在以下位置。曲线图对应着不同的具体绘制命令。更具体地讲,基于时间,相关图形的变化,并得出一个类似网格地理 孙息地图。

  4.2基于OpenDSS的配电网潮流计算

  针对目前的辐射分布网络中,前向推回方法是更常用的功率流算法中使用。它广泛用于径向网络中,而且在弱环网也得到了有效地运用。配电网的收敛性情况能通过对图中的多点分析来进行判断。该平台可以完成各种电路模型的功率分析,在进行潮流计算时还支持多种计算模式,能够满足不同的使用情况。潮流计算涉及到功率流的处理问题,最常用的解决方案有两种,分别是通过顶点迭代和直接求解的方法。下面给出第一种方案的主要介绍:

  4.3用户自定义拓展应用

  该软件能够根据用户的特定需要来分析配电系统的仿真,该软件上的基本模块只有一个COM接口,但是如果需要进行更多方面的扩展,也可以实现,比如通过com接口将软件文件导入到Matlab、和Python等软件上进行操作。图4.3展示出了进行拓展时的接口情况。

  图4.3 OpenDSS/COM接口

  在该平台上拥有多个这样的接口,不同的接口用于完成不同的任务,下表给出了该接口最主要实现的功能,并对不同的功能给出了相应的描述。

  表4.3 OpenDSS部分接口

  5提升配电网接纳分布式电源能力的仿真分析

  5.1提升配电网接纳分布式电源能力的技术

  对于这些研究的目的都是为了是配电网的接入能力得到优化,从而能够更加高效、节约地向用户提供电力,研究的方向主要围绕调整连接装备来进行改善,主要有有载调压变压器抽头和逆变器等。在此,我将通过仿真建模来分析并比较有载调压变压器抽头调整和无功补偿这两种控制措施对配电网接纳分布式电源能力的具体影响。

  具体分析思路如下:

  保证配电网中光伏发电系统的接入数量、接入位置、安装容量、变压器型号以及无功补偿装置的安装位置等影响因素不变,分别改变有载调压变压器抽头和无功补偿容量,借助Matlab得到散点图,分析比较不同措施对配电网接纳光伏发电系统能力的影响。当接入能力在不断改变时就不断对接入的光伏发电系统的比例进行调整,重复进行来寻找最佳的接入状态,并在在调整过程中不断调整变压器抽头和无功补偿来确定对最大接入能力影响作用是如何进行的,改变光伏发电系统的24h出力曲线,仍然重复上述步骤,总结最大准入容量的变化规律。

  5.2算例分析

  图5.1展示出了配电网中可以施加负载的各个接入点的分布情况,平衡节点位于标号为0的位置,有载调压变压器被我们设置在配电网接入点之前,无功补偿装置被我们安装在标号分别为14、26、30的负荷节点上,确定配电网的各项性能参数后,利用软件建立最佳模型,并针对着三十三个负荷接入点进行模拟仿真分析,可以证实上文提出的模拟仿真思路具有可行性,并且明确各个参数的具体变化范围,通过分析每次参数改变得到的散点图,评估该配电网接纳光伏发电系统的能力。

  图5.1配电网单线图

  利用软件结合收集到的配电网参数首先进行建模操作,然后利用matlab软件来实现配电对光伏发电系统的并入,图5.2给出了软件操作流程。

  图5.2模型流程图

  已知24小时内某一时刻的光伏渗透率等于该时刻的光伏出力与对应时刻的负荷之比,于是我们假定该配电网系统中负荷的各小时均值为[3.851,3.76504,3.73066,3.6877,3.6877,3.7049,3.99713,4.2034,4.3840,4.5301,4.9255,4.9599,1,4.5043,4.4269,4.5817,4.5989,4.5559,4.3840,4.3066,4.5301,4.6075,4.1948,3.8854],负荷的各小时方差为[0.172,0.1324,0.1324,0.1307,0.13152,0.13582,0.146991,0.157307,0.175358,0.198567,0.22,0.21,0.198,0.197,0.208,0.209,0.21,0.19,0.186,0.21,0.208,0.194,0.147,0.16],光伏发电系统的24小时出力为[0,0,0,0,0,0,0.16,0.78,2.2,3.57,4.26,5.22,5.41,5.09,4.51,2.93,1.11,0.16,0,0,0,0,0,0],还借助MATLAB明确了24小时内光伏发电系统渗透率最大的时刻为13点并计算出了该时刻的负荷均值以及负荷方差,在MATLAB中我们还设定该配电网的光伏发电系统接入比例为20%,安装在标号14、26、30的负荷节点的无功补偿容量均设为0,变压器分接头挡位为1,33个负荷节点的具体分配方案为[0,100,90,120,60,60,200,200,60,60,45,60,60,120,60,60,60,90,90,90,90,90,90,420,420,60,60,60,120,200,150,210,60]。

  使用时首先我们需要人为给定该配电网中光伏发电系统的最大接入数M(M的取值范围是1到32之间的自然数),其次我们需要借助预先编好的程序在1到M之间随机产生每次模拟过程中实际接入配电网的光伏发电系统数,再次要设定好具体的随机模拟次数,在前面部分已经对影响接入能力的各项参数值以及变化情况已经确定过,该步骤可以直接对最大准入容量值进行计算,只需要对程序进行运行就能得到所需要的结果,得到接入配电网的光伏发电系统的容量及各负荷节点电压的最大值为横纵坐标建立的散点图并进行分析。

  下文所展示的图5.3、图5.4、图5.5都是在给定条件下得出的,系统的存在的电压约束上限,给定光伏发电系统的最大接入数M为32,随机模拟次数为5000,运行程序三次之后得到的散点图。

  图5.3第一次运行程序所得光伏最大接入容量为602.1 KW

  图5.4第二次运行程序所得光伏最大接入容量为783.6 KW

  图5.5第三次运行程序所得光伏最大接入容量为639.1 KW

  求得三次程序运行所得结果的平均值,认定该值即为在当前参数的配电网中能够接纳的光伏发电系统最大容量。

  对比以上的散点分布,我们不难发现,在蒙特卡洛随机模拟中,即使设置相同的参数,每次运行程序的结果也是不确定的。理论上讲,随着程序中模拟次数的增加,运行程序所得到的散点的分布趋势会更加明显,该配电网系统所能接纳的光伏最大容量将会在很小的范围内发生波动并最终趋于一个稳定值,但是由于计算机系统自身硬件的限制,本文我们仅对模拟次数5000和10000的运行结果进行对比分析。

  改变光伏发电系统最大接入数M的取值,保持模拟次数5000不变,运行程序并分析所得到的散点图;保持M的取值不变,将模拟次数改为10000,再次分析该配电网所能接纳光伏发电系统最大容量的变化情况。

  记录每次随机模拟的结果于表5.1;

  M模拟5000次配电网接纳光伏

  最大容量(kW)模拟10000次配电网接纳光伏

  最大容量(kW)

  光伏最大接入数第一次运行程序所得最大容量第二次运行程序所得最大容量第三次运行程序所得最大容量三次程序运行所得结果的平均值第一次运行程序所得最大容量第二次运行程序所得最大容量第三次运行程序所得最大容量三次程序运行所得结果的平

  均值

  32 602.1 783.6 639.1 674.9 1442 956.4 902.6 1100.3

  31 749.4 694.4 739.4 727.7 1265 635.1 974.7 958.3

  30 704.8 715.9 991.1 803.9 1037 1078 976.3 1030.4

  29 692.6 520.2 934.7 715.8 1441 831.2 524.3 932.2

  28 1182 815.5 695.5 931 992.6 1009 1316 1105.9

  27 1263 1682 1045 1330 914.7 686.4 1066 889

  26 1483 1173 1134 1263.3 1312 1117 995.1 1141.4

  25 1252 1149 941.7 1114.2 1384 1214 778 1125.3

  24 798.8 1578 1146 1174.3 975.4 983.5 841.6 933.5

  23 618.4 764 946.5 776.3 727.5 946.8 1061 911.8

  22 964 990 1480 1144.7 673.3 689.1 1107 823.1

  21 1722 1116 785.4 1207.8 1026 1159 1218 1134.3

  20 1068 940.5 1216 1074.8 1202 1319 897.4 1139.5

  19 556 1170 673.8 799.9 1635 678.8 1321 1211.6

  18 748.3 1069 706.8 841.4 840.5 1403 1295 1179.5

  17 671 1143 1280 1031.3 606.5 1114 1031 917.2

  16 1072 1152 844.5 1022.8 614.9 739.8 1292 882.2

  15 693.7 908 1411 1004.2 998 960.6 724.3 894.3

  14 866.3 1282 975.2 1041.2 925.9 1014 951.9 963.9

  13 1070 793.5 1201 1021.5 1217 1293 895.9 1135.3

  12 1380 1525 1742 1549 1102 723.5 532.8 786.1

  11 517.3 682.2 694.4 631.3 1046 1226 1262 1178

  10 942.6 827.8 1121 963.8 1260 868 1052 1060

  9 785.7 1140 1125 1016.9 1500 1245 755.9 1167

  8 973.6 1471 976.5 1140.4 600.4 985.4 1032 872.6

  7 1336 943.8 835.7 1038.5 1098 1009 984.4 1030.5

  6 1033 763.7 845.1 880.6 994.7 613.5 996.2 868.1

  5 1123 673 540.9 779 1305 990.5 1234 1176.5

  4 739.7 1573 1125 1145.9 812.2 1175 812.1 933.1

  3 881.6 918.1 833.3 877.7 935.1 1028 878.8 947.3

  2 578.4 923.3 725.9 742.5 1235 873.7 780.4 963

  1 912.9 698.1 507.5 706.2 1067 581 419.1 689

  表5.1

  根据表5.1所得到的不同模拟试验情况下的接入容量值,进行分析总结得到:在前文所述的IEEE 33负荷节点配电网系统中,当程序设定的随机模拟次数为5000、光伏发电系统最大接入数M为27时,对应的接入容量最大为;第二次试验增加一倍的随机模拟次数,在配电网中的合理位置接入相适配的19个接纳点,求出配电网的最大准入容量值为。

  前文中已经明确,该配电网的光伏发电系统接入比例为20%,并且接入的光伏发电系统24小时内渗透率最大的时刻为13点,最大光伏渗透率为541%。下一步就是不断对两个影响指标在一万次随机模拟的模型中进行不断调整,并保持接入负荷数目为原有的最大接入容量对应的十九个。通过控制单一变量的试验,只对节点处的无功补偿容量大小进行改变,来记录改变无功补偿容量而对应的接入容量值变化情况。

  记录每次随机模拟的结果于表5.2、表5.3;

  k配电网接纳光伏最大容量(kW)

  有载

  调压

  变压

  器变

  比第一

  次运

  行程

  序所

  得最

  大容

  量第二

  次运

  行程

  序所

  得最

  大容

  量第三

  次运

  行程

  序所

  得最

  大容

  量三次

  程序

  运行

  所得

  结果

  的平

  均值

  0.985 867.6 720.9 782.6 790.4

  0.99 1137 284.5 633.6 685

  0.995 1340 692.8 820.5 951.1

  1 1635 678.8 1321 1211.6

  1.005 1370 935.8 1222 1175.9

  1.01 835.3 1271 986 1030.8

  表5.2

  表5.3

  配电网接纳光伏最大容量(kW)

  标号

  14、26、30

  负荷

  节点处

  无功

  补偿

  容量(KVar)第一

  次运

  行程

  序所

  得最

  大容

  量第二

  次运

  行程

  序所

  得最

  大容

  量第三

  次运

  行程

  序所

  得最

  大容

  量三次

  程序

  运行

  所得

  结果

  的平

  均值

  15、20、25 761.1 1351 796.8 969.6

  20、15、25 767.2 621.8 546.6 645.2

  25、15、20 706.5 947.1 964 872.5

  30、40、50 537.6 577.3 810.7 641.9

  45、60、75 375.2 536.2 384.9 432.1

  在以上的实验基础之上,还进行了其它单一变量的对比试验,针对配电网接入光伏发电系统的比例进行不断改变,来探究这两种控制措施在不同比例发电系统的配电网中的作用效果的相同之处和不同点,从而更好的掌握两种控制措施的有效性。

  表5.4、表5.5进行的是接入比例的单一变量模拟试验得出的结果;

  k配电网接纳光伏最大容量(kW)

  有载

  调压

  变压

  器变

  比第一

  次运

  行程

  序所

  得最

  大容

  量第二

  次运

  行程

  序所

  得最

  大容

  量第三

  次运

  行程

  序所

  得最

  大容

  量三次

  程序

  运行

  所得

  结果

  的平

  均值

  0.985 582.1 708.4 846.5 712.3

  0.99 334.6 978.1 874.5 729.1

  0.995 924.6 1223 691.5 946.4

  1 1344 1772 1002 1372.7

  1.005 1123 717.1 795.7 878.6

  1.01 754.1 1397 994.3 1048.5

  表5.4

  配电网接纳光伏最大容量(kW)

  标号

  14、26、30

  负荷

  节点处

  无功

  补偿

  容量(KVar)第一

  次运

  行程

  序所

  得最

  大容

  量第二

  次运

  行程

  序所

  得最

  大容

  量第三

  次运

  行程

  序所

  得最

  大容

  量三次

  程序

  运行

  所得

  结果

  的平

  均值

  15、20、25 1070 1042 514.1 875.4

  20、15、25 1034 972.8 759.3 922.0

  25、15、20 679 1623 688.3 996.8

  30、40、50 1065 847.4 608.8 840.4

  45、60、75 703.5 952.2 675 776.9

  表5.5

  表5.6、表5.7进行的是渗透率的单一变量模拟试验得出的结果;

  k

  有载调压变压器变比第一次运行程序所得最大容量第二次运行程序所得最大容量第三次运行程序所得最大容

  量三

  0.985 801.8 926.6 434.7 721

  0.99 645.7 577.1 450.2 557.7

  0.995 775.7 1075 1216 1022.2

  1 765.1 691.6 902.7 786.5

  1.005 558 1069 797 808

  1.01 1204 1475 1758 1479

  表5.6

  配电网接纳光伏最大容量(kW)

  标号14、26、30负荷节点处无功补偿容量(KVar)第一次运行序所得最大容量第二次运行程序所得最大容量第三次运行程序所得最大容量三次程序运行所得结果的平均值

  15、20、25 963.8 938.6 1323 1075.1

  20、15、25 1109 403.5 1125 879.2

  25、15、20 378.2 1119 952.8 816.7

  30、40、50 805.4 615.1 410.5 610.3

  45、60、75 956.2 401.1 798.5 718.6

  表5.7

  通过以上多组数据的分析和对比得到以下结论:就提高配电网的接入能力而进行的有载调压变压器调整措施是有效果的,因为不同的位置时对应不同的配电网电压水平,使得在接入光伏电源系统时尽量避免电压越限现象,从而具有有效的调整效果;且当接入配电网的光伏发电系统渗透率较高时也有可能导致电压越限问题,可以通过无功补偿装置快速降低配电网系统的电压水平,这样使得配电网能接入的光伏电源系统的容量上限也有所提高。